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Abstract 
 One of the top emerging threats to soybean production in the U.S. is sudden death 
syndrome (SDS) caused by the fungal pathogen, Fusarium virguliforme.  The soil-borne 
pathogen infects roots causing initial root rot symptoms, later followed by foliar symptoms 
marked by interveinal chlorosis and necrosis.  These foliar symptoms are thought to be caused by 
host-selective toxins and effector proteins that enter xylem during the root infection, since F. 
virguliforme remains in the roots throughout infection.  These foliar symptoms can cause 
premature defoliation, pod drop, and up to 100% yield loss.  Two proteins, FvTox1 and FvNIS1, 
have been identified as important factors in foliar SDS development, but their modes of action 
remain unknown.  To date, genetic resistance to SDS is quantitative and controlled by many 
quantitative trait loci.  Initially, F. virguliforme was thought to have a narrow host range, but it 
has recently shown the ability to colonize other common field crops and weeds, though 
development of classic SDS symptoms are inconsistent.  This proposal aims to elucidate the 
mechanisms by which F. virguliforme enters soybean roots and identify the targets of FvTox1 
and FvNIS1.  In addition, I will investigate alternate plant hosts for potential resistance to root 
infection and to foliar symptom development caused by these proteins.  
 
Primary Objective:  Characterize how F. virguliforme enters soybean roots, causes effector-
induced foliar symptoms, and identify mechanisms of resistance to SDS in other crop hosts. 
 
Central Hypotheses:  Fusarium virguliforme infects soybean roots independently and via direct 
interactions with the soybean cyst nematode.  Non-soybean hosts employ unique resistance 
mechanisms that prevent root rot and foliar symptom development caused by F. virguliforme.  
 
Specific Aims 
Aim 1 – Identify modes of F. virguliforme entry into soybean root tissues 

• Generate a fluorescent strain of F. virguliforme 
• Search for appressorium development on soybean roots using fluorescent microscopy 
• Determine if F. virguliforme interacts with and colonizes nematodes using fluorescent 

microscopy 
 
Aim 2 – Identify FvTox1 and FvNIS1-interacting proteins that induce foliar SDS symptoms 

• Confirm less virulent phenotypes of fvtox1 and fvnis1 mutants 
• Tag FvTox1 and FvNIS1 with a fluorescent marker  
• Vacuum infiltrate fluorescently tagged FvTox1 and FvNIS1 into soybean leaf disks to 

identify subcellular localization using fluorescent microscopy  
• Identify potential interacting proteins using co-immunoprecipitation and liquid 

chromatography – mass spectrometry (LC-MS) 
• Confirm potential interacting proteins with yeast two-hybrid experiments  

 
Aim 3 – Investigate alternate-host resistance mechanisms to SDS 

• Identify toxin-interacting homologs in other crops through gene homology studies  
• Vacuum infiltrate fluorescently tagged FvTox1 and FvNIS1 into alternate host leaf disks 

to identify subcellular localization using fluorescent microscopy  
• Identify potential interacting proteins using co-immunoprecipitation and LC-MS 
• Confirm potential interacting proteins with yeast two-hybrid experiments 
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Background and Significance 
 
History and current state of soybean SDS in the U.S. 
 The causal agent of soybean sudden death syndrome (SDS) in the U.S. was identified in 
1971 in Arkansas as Fusarium solani f. sp. glycines1–3.  Since then, genetic and morphological 
studies have shown that Fusarium solani f. sp. glycines consists of multiple distinct species, with 
Fusarium virguliforme (Fv) being the only SDS-causing species present in the U.S.4–8  However, 
recent surveys have identified other SDS-causing Fusarium species in Michigan, although Fv 
remains the most prominent species (M. Chilvers and J. Jacobs, unpublished).  Initial symptoms 
of SDS appear in the roots as discoloration and rotting, with foliar symptoms typically 
developing much later.  Severe foliar symptoms include interveinal chlorosis and necrosis that 
can lead to premature leaf drop and pod abortion, causing a significant decrease in yield.  These 
above-ground symptoms occur while Fv remains in the roots secreting proteins and other 
compounds that induce the foliar symptoms9 (Fig. 1).  Soybean SDS is now present in nearly all 
soybean producing states in the U.S., having caused an average 27.7 million bushel yield loss 
between 2004 and 200910,11. 

Soybean SDS is a persistent, recurring, and spreading problem.  Fv is persistent in fields 
because effective management strategies are not consistently effective across regions and Fv has 
been shown to colonize many common crop and weed species, even though classical SDS 
symptoms do not typically develop12.  Management strategies such as crop rotation, soil tillage 
practices, and seed treatments with fungicides have all shown mixed results, making it difficult 
to give appropriate recommendations to growers about how to manage SDS9.  Genetic resistance 
to SDS would be an effective management strategy, but studies in this area have determined that 
resistance is complex and controlled by quantitative trait loci (QTLs), which can contribute to 
root rot resistance or foliar resistance separately13–16.  Some of the QTLs associated with SDS 
resistance overlap with known QTLs for other pests, making it difficult to decipher the role and 
impact of each resistance QTL17.  

 
Fusarium virguliforme entry into root tissues  
 Fusarium virguliforme is a soil-borne pathogen capable of infecting soybean roots and 
can only be re-isolated from roots or lower stems1,2.  To enter plant roots, many fungal pathogens 
generate specialized hyphae called an appressorium to build up turgor pressure, forcing a hyphal 
penetration peg between the cells of a plant host18,19.  Once inside the host, fungal pathogens 
typically do one of three things; develop hyphae that remain in the extracellular apoplast, 
develop intracellular invasive hyphae, or develop specialized feeding structures called haustoria 
that also invade plant cells20.  Scanning electron microscopy of Fv appears to show appressoria 
formation on soybean root surfaces and root cross sections show evidence that Fv colonizes the 
vascular tissues21.  Appressorium development by Fv is surprising, since better-characterized 
Fusarium relatives (F. oxysporum, F. graminearum, and F. verticillioides) either develop 
intermittent appressorium-like structures22 or no appressorium at all23,24.  Instead, Fusarium 
species typically rely on cell wall degrading enzymes25–27, and the Fv genome contains many 
genes for plant cell wall degrading enzymes28.  It is possible that Fv may use both appressorium 
development and cell wall degrading enzymes to enter soybean roots.  In this study, a fluorescent 
strain of Fv will be used to examine fungal development on soybean root tissues and search for 
additional evidence of appressorium development.   
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Figure 1. Infection cycle of Fusarium virguliforme in soybean.  (A) Sporodochia develop (white 
arrows), (B) containing many 3-5 septate macroconidia.  (C) Conidia germinate and infect 
soybean roots, causing root rot symptoms. (D) Toxin production, secretion, and translocation 
causes foliar SDS symptoms. (E) F. virguliforme remains in roots, developing pigmented 
(sometimes blue) masses of chlamydospores for overwintering (white arrows). 
 
 A more efficient mode of entry into soybean roots may be provided by the soybean cyst 
nematode (SCN).  Independently, SCN is a major threat to soybean production throughout the 
U.S.  However, Fv and SCN are commonly found in the same fields, leading some to believe that 
they may be able to directly interact with one another.  Currently, there is conflicting evidence 
about the impact of SCN on SDS.  A synergistic relationship between SCN and Fv could make 
soybean SDS symptoms worse, and an antagonistic interaction could result in a competition for 
nutrients, thus allowing only one pathogen to become a prominent problem.  Initially, the two 
pathogens were thought to compete with one another because evidence suggested that Fv could 
infect and parasitize SCN cysts and juveniles29,30.  This idea has been somewhat dismissed 
because the studies used F. solani f. sp. glycines isolates, which may not have specifically been 
Fv.  Subsequent field studies have measured SDS severity in the presence of both pathogens and 
found that foliar SDS symptoms occur sooner and are more severe when both pathogens are 
present, compared to single inoculations31–35.  In contrast, other greenhouse36 and field studies37–

39 have shown little to no correlations between SDS severity and SCN quantity, with Fv being 
the only significant factor contributing to SDS.  Interestingly, one greenhouse study occasionally 
found mild foliar SDS development in the presence of SCN and the absence of Fv inoculation36.  
This curious observation might be explained by a phosphate deficiency, which can be mistaken 
as SDS.  Alternatively, the researchers may have unknowingly vectored Fv with SCN, since 
SCN is an obligate biotroph and can only be reared on soybeans.  To date, all studies examining 
SDS in the presence of SCN have had very similar experimental designs, yet they have yielded 
inconsistent results and provided little advancement in our knowledge to the relationship 
between Fv, SCN, and SDS.  These discrepancies could be due to the different Fv isolates, SCN 
races, and soybean cultivars used in each study.  A new approach is needed to significantly 
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advance knowledge about these biological relationships.  I propose to use a fluorescent strain of 
Fv in co-culture experiments with SCN to examine their relationship using fluorescent 
microscopy.  Some Fusarium species have been shown to colonize Caenorhabditis elegans40, 
hence Fv may be able to colonize SCN.  This type of interaction could allow SCN to transmit Fv 
into soybean roots through mechanical wounds.   
 
SDS symptom development 
 The mechanisms employed by Fv to cause root rot symptoms are unknown and have not 
been studied at a molecular level.  However, many studies have investigated the cause of the 
striking foliar SDS symptoms (Fig. 1D).  The development of foliar symptoms while Fv remains 
in the roots triggered the hypothesis that Fv can secrete host selective toxins (HSTs), 
phytotoxins, and effector proteins into the soybean vascular tissue that translocate to the foliar 
tissues41–43.  Subsequent studies identified that cell free culture filtrates alone are capable of 
inducing foliar SDS symptoms, supporting this hypothesis42–44.  Major evidence that fungal 
pathogens can secrete proteins inside plant xylem came with the identification of secreted in 
xylem (SIX) proteins in tomatoes infected by Fusarium oxysporum f. sp. lycopersici45,46.  It was 
later shown that Fv could secrete proteins into soybean xylem47, although the study did not 
identify the three well-characterized phytotoxic proteins produced by Fv.  Interestingly, Ji et al. 
showed that light is required for cell-free culture filtrates to induce foliar SDS and that these 
symptoms are associated with the degradation of the large subunit of Rubisco48.  The ToxA 
protein produced by Pyrenophora tritici-repentis also requires light to cause disease symptoms 
in wheat and functions by direct interaction with a chloroplast protein, which disrupts chloroplast 
function49–51.  Some have speculated that FvTox1 also localizes to chloroplasts52,53, though 
subcellular localization of FvTox1 in soybean leaves needs to be confirmed. 

 Fungal proteins that induce plant disease symptoms are often called host selective toxins 
(HSTs) or effectors in the literature.  To date, no studies have investigated whether specific Fv 
proteins can cause disease symptoms in other plants.  Therefore, I will refer to all Fv proteins 
involved in symptom development as effectors instead of HSTs.  Fv contains a single gene that 
encodes a 13.5kDa protein named Toxin1 (FvTox1)54.  This gene has been well characterized 
and is known to play a role in foliar chlorosis in soybeans, as fvtox1 mutants cause a 2-fold lower 
severity of foliar SDS55.  Like many small, secreted proteins, FvTox1 is processed from a pro-
peptide for secretion and is cysteine rich with 5% cysteine residues54.  Another effector produced 
by Fv was originally identified in 1996 as a 17 kDa protein and was re-discovered in 2016 and 
named FvTox2, but still has not been well characterized43,56.  The most recent protein was 
identified as FvNIS1 and is plays a role in foliar necrosis development of soybeans56.  FvNIS1 is 
an ortholog to the Necrosis Inducing Secreted peptide 1 (NIS1) from Colletotrichum orbiculare, 
which is a small secreted protein but only contains one cysteine residue57.  In addition to these 
proteins, Fv is also capable of producing toxic secondary metabolites like radicicol (monorden), 
fusaric acid, and citrinin that can accumulate and cause cell death in soybean leaves41,56. 

Identifying new phytotoxic compounds and effector proteins is an important step towards 
understanding the complexity of the interactions between any pathogen and host.  However, 
previous studies have shown significant roles for both FvTox1 and FvNIS1 in foliar symptom 
development55,56.  This warrants further investigation into their modes of action, which is the 
central focus of this proposal.  Identifying targets of FvTox1 and FvNIS1 which induce foliar 
symptoms may allow new targets for improving soybean resistance to SDS (Fig 2).  Instead of a 
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targeted approach, recent studies have focused on developing synthetic peptides or mammalian-
derived antibodies that generally bind to FvTox152,58.  However, binding FvTox1 does not 
necessarily inhibit its function and synthetic constructs need to be validated in planta before they 
can be deemed safe and effective.  In addition, mammalian-derived transgenes in plant tissues 
make them unfit for human consumption under the current USDA regulations.  Instead, I will 
identify the host proteins that FvTox1 and FvNIS1 target to cause foliar SDS symptoms, 
revealing specific points of intervention that could enhance SDS resistance.  These mechanisms 
are important because they may function in very different ways.  For instance, Pyrenophora 
tritici-repentis, which causes tan leaf spot of wheat, produces two major effectors that can have 
two different modes of action to cause disease symptoms51.  As mentioned, ToxA functions 
inside plant cells inducing rapid cell necrosis after localizing to the chloroplast49–51.  In contrast, 
ToxB functions outside plant cells in the apoplast inducing gradual chlorosis51,59.  However, both 
contain a single host susceptibility gene in wheat49, indicating the intricate nature of plant-
pathogen interactions.  By investigating the modes of action of individual effectors produced by 
Fv, in soybean and in alternate hosts, unique modes of resistance for FvTox1 and FvNIS1-
induced symptoms may be identified (Fig. 2).  

 
 

 
 

Figure 2. Points of interaction for Fusarium virguliforme 
toxins and plant hosts. (A) F. virguliforme infects soybean 
root tissues and begins expressing toxins.  (B) Toxins enter 
xylem tissues and begin translocating to the foliar tissues.  
(C) Toxins travel through xylem into foliar tissues.  (D) 
Toxins reach leaf tissues and interact with their target, 
inducing cell death.  In alternate hosts, a lack of symptom 
development may result from (A) no expression of toxins, 
(B) the inability for toxins to enter xylem, (C) degradation 
of toxins within the xylem, or (D) a lack of an appropriate 
binding partner to induce symptom development. 

 
Significance 

Soybeans are one of the top grossing crops in the United States each year, netting an 
average production value of $39.9 billion over the past five years.  Its oils are valuable in many 
industries including cooking oil production and biofuels.  Its protein content also makes valuable 
feed supplements for livestock.  However, Fv continues to spread world-wide, now found in 
Malaysia and South Africa60,61 threatening global agriculture.  Identifying a role for SCN in Fv 
infection in this study may provide more useful management advice for growers to prevent SDS.  
Specific soybean proteins that interact with Fv effectors can become targets for novel genome 
editing tools to edit genes to specifically inhibit the action of FvTox1 and/or FvNIS1.   
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Preliminary Studies 
 
Assessment of Risk Factors for Predicting SDS 
 To date, management strategies for reducing SDS have yielded inconsistent results.  The 
best management strategy is growing soybean cultivars with enhanced genetic resistance, but no 
cultivar has shown 100% resistance.  Therefore, we sought to determine our ability to predict the 
risk of a field developing SDS by collecting samples before and throughout the growing season 
in a field naturally infested with F. virguliforme.  Accurately predicting SDS development may 
provide soybean growers with useful information for making better management decisions, like 
using seed with higher resistance, using a seed treatment, or planting a different crop altogether.   

This two-year field study took place in Decatur, MI during 2014 and 2015.  This field site 
was found to be naturally infested with Fv in 2009, and SDS continues to be a problem.  Often 
during SDS outbreaks, foliar symptoms develop in “patches” within a field, but it is unclear if 
this is due to a heterogeneous distribution of Fv or other environmental factors.  Soil samples 
were collected prior to planting in a grid sampling design to prevent biased sampling, and 
consisted of 96 samples over a 446m2 area.  These samples were processed for DNA extraction, 
and the DNA was used for quantification of Fv using a qPCR assay shown to have high 
sensitivity and specificity across many labs62,63.  The abundance of nematodes, including 
soybean cyst nematodes (SCN), were also determined from these soil samples by MSU 
Diagnostic Services.  The same cultivar was planted throughout the plot to control for cultivar 
effects on SDS development (Asgrow AG2534 in 2014, Asgrow AG2535 in 2015, Monsanto 
Company, St. Louis, MO, USA).  At young vegetative (V3) and mature reproductive (R5) 
soybean growth stages64, three plants were collected from each of the 96 sample points to assess 
SDS severity.  Roots of the three individual plants were visually rated as a percentage of rotten 
root tissue, and leaves of the three individual plants were visually rated for foliar SDS on a scale 
from 0-9 in 0.5 increments (Jason Bond, Southern Illinois University, unpublished).  Lastly, in-
field SDS incidence (percentage of plants expressing any SDS symptoms, from 0-100%) and 
severity (average severity of plants expressing SDS symptoms, from 0-9) ratings were taken at 
soybean reproductive stages R4, R5, and R6 and converted into a disease index score by taking 
!"#$%&"#&	∗	)&*&+$,-

.
.  This provided disease index values on a continuous scale from 0-100, instead 

of a discrete 0-9 scale65.  In 2014, disease index ratings were obtained on a plot-wide basis, 
providing 24 data points.  In 2015, disease index ratings were obtained on a three-foot swath of 
plants at each sampling location, providing 96 data points. 
 Another advantage to the grid sampling design is that each sample point has unique 
coordinates. Therefore, we plotted each risk factor with coordinates and interpolated values to 
fill in non-sampled areas, creating contour plots that shows the distribution of each risk factor 
throughout the field using the ‘fields’ package in R version 3.2.0 (Fig. 3).  The data were 
interpolated through simple kriging using a stationary covariate model.  The quantities of Fv and 
SCN in the soil before planting were found to be heterogeneous in both 2014 (Fig. 3A) and 2015 
(Fig. 3B).  In 2014, the abundance of Fv in the soil prior to planting had a significant positive 
correlation to the SDS disease index at growth stage R5 (R = 0.41, p = 0.047), while SCN in the 
soil prior to planting had no significant correlation to SDS disease index at growth stage R5 (R = 
0.22, p = 0.296).  In 2015, the abundance of Fv in the soil prior to planting had a significant 
positive correlation with SDS disease index scores at growth stage R5 (R = 0.51, p = 1.13x10-7), 
while SCN also had a significant positive correlation to SDS disease index at growth stage R5 (R 
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= 0.53, p = 2.99x10-8).  In addition, 2014 showed no significant correlation between Fv and SCN 
quantities in the soil prior to planting (R= 0.3, p = 0.155), but 2015 did (R = 0.40, p = 5.98x10-5).  
Together, these results indicate that the distribution of Fv in the soil can help aid in the prediction 
of SDS development even with samples taken before planting.  In addition, the distribution of 
SCN may also help in SDS prediction, yet the relationships between Fv and SCN, and between 
SCN and SDS remains unclear and will be investigated in this proposal.  This risk assessment 
project has concluded and these findings are in preparation for publication (Roth et al, in prep).  

 
Figure 3. Contour plots of Fusarium virguliforme, soybean cyst nematode, and SDS 
distributions in a field plot during (A) 2014 and (B) 2015.  Right, quantity of F. virguliforme 
DNA in the soil as a ratio of total DNA extracted.  Middle, counts of SCN present in the soil.  
Right, SDS disease index ratings at soybean growth stage R5.  Tan areas represent high 
quantities and green areas represent low quantities.   
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Development of transgenic Fusarium virguliforme strains 
 Previous studies have developed successful transformation methods for knocking out 
genes or inserting GFP in Fv55,56,66.  Unfortunately, no other studies have been published since 
the development of the GFP strain.  Fluorescent proteins are commonly used in fungi, and many 
fluorophores have been optimized to perform better than GFP67–69.  We have developed an 
optimized protocol for protoplast generation and genetic transformation of Fv using existing 
protocols for Fv and for the close relative F. graminearum66,70, and intend to develop a GFP 
strain for studying the infection process of soybean using fluorescent microscopy.   

Our preliminary work has resulted in an fvtox1 mutant in order to replicate the results of a 
previous study by Brar et al.  Their study knocked out Fvtox1 in the Fv strain Clinton1B, and 
found that foliar symptoms in the Williams 82 soybean cultivar were reduced 2-fold when using 
a stem-cut assay containing culture filtrates obtained from the mutant55.  Our fvtox1 mutant strain 
was obtained using the Fv isolate Mont-1 (NRRL 22292).  It successfully colonizes potato 
dextrose agar amended with 150µg/mL hygromycin (Fig. 4A), because the Fvtox1 gene has been 
successfully replaced by the hygromycin phosphotransferase (hph) gene (Fig. 4B).  Our 
preliminary results show that root rot symptoms in the Sloan soybean cultivar are significantly 
reduced when inoculated with the fvtox1 mutant, but foliar symptoms are not different than the 
wild type (Figure 5).  These results need to be replicated and performed with multiple 
independent fvtox1 knockouts prior to making final conclusions. 
 

 
Figure 4. Genetic knockout of FvTox1.  (A) The wild type strain (Mont-1) is able to grow on 
potato dextrose agar, but not when amended with 150 µg/mL hygromycin.  The fvtox1 4-3 
mutant is capable of growing on potato dextrose agar, even when amended with 150 µg/mL 
hygromycin.  Images were taken 21 days post inoculation.  (B) Mont-1 is PCR positive for the 
FvTox1 gene, while the fvtox1 4-3 mutant is negative.   Mont-1 is PCR negative for the 
hygromycin resistance gene (hph) while the fvtox1 4-3 mutant is positive.   
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Figure 5. Virulence screen of the fvtox4-3 mutant.  Root rot severity was significantly decreased 
compared to inoculation with the wild type strain (Mont-1), but still caused significantly more 
damage the either negative control (NIC = non-inoculated sorghum control). 
 

These preliminary studies have laid the foundation for my future studies.  Our risk 
assessment project determined that Fv can be heterogeneously distributed throughout a field, and 
that sampling soil before planting may provide useful information to growers while making 
management decisions.  One of these decisions may be the use of genetically resistant soybean 
cultivars to reduce yield losses across a field, although full genetic resistance is currently 
unavailable.  Our risk assessment project also indicated a potential interaction between SCN and 
Fv in a field setting, particularly in 2015, that needs further validation.  The molecular protocols 
developed so far will be used to generate useful tools to study SDS development and the 
interaction between Fv and SCN.  
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Experimental Design 
 
Aim 1 - Identify modes of F. virguliforme entry into soybean root tissues 
 The first mode of entry I will investigate is the individual capability of F. virguliforme 
(Fv) to penetrate soybean root tissues. Although evidence of appressorium development have 
been reported for Fv21, a recent in silico analysis suggested that Fv may rely more heavily on 
plant cell wall degrading enzymes to enter plant tissues28.  To address these two different 
findings, I plan to generate a fluorescent strain and observe soybean root infection over time via 
fluorescent microscopy.  The transformation construct needed to produce a fluorescent strain of 
Fv will be generated on a plasmid using PCR and Gibson Assembly.  The plasmid will contain 
the enhanced GFP (eGFP) gene under the control of the strong GPD promoter and TrpC 
terminator from Aspergillus nidulans (plasmid pDS2371), the hph gene (plasmid pCB100472), an 
E. coli origin of replication (OriC), and a kanamycin resistance gene (aminoglycoside O-
phosphotransferase) (Fig. 6A).  Primers used to amplify these four segments contain 5’ 
overhangs that overlap with the fragment next to it, therefore incorporating these overlaps into 
the PCR product.  These PCR products can be assembled into a plasmid using Gibson assembly 
methods73.  Briefly, a T5 exonuclease digests a single strand of each PCR fragment from the 5’ 
end, generating 3’ sticky ends that interact with the overlapping segments introduced from the 
neighboring PCR product.  Then, a DNA polymerase fills in any missing sequences that may 
have been digested away by the exonuclease, and gaps in the phosphate backbone are sealed by a 
T4 DNA ligase.  When designed correctly, the result is a plasmid that can be directly 
transformed into E. coli for mass production.  I have specifically designed two restriction sites 
into the plasmid, providing the ability to remove the OriC and kanamycin resistance gene and 
only use the eGFP and hph construct to transform Fv (Fig. 6B).  Alternatively, this plasmid could 
be used as a PCR template to produce a split-construct design to reduce the number of false 
positive transformants74,75.   
 

 
Figure 6. (A) Plasmid “Fv_GFP2”, developed via Gibson Assembly.  (B) Results of a restriction 
digest of Fv_GFP2 designed for transforming F. virguliforme.   
Lane 1 = ladder, Lane 2 = undigested, Lane 3 = SacI single digest, Lane 4 = PstI single digest, 
Lane 5 = SacI and PstI double digest. 
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 Ascomycete fungi are commonly transformed by using protoplasts, polyethylene glycol, 
and homologous recombination (HR)76–80.  This method has also been used successfully in 
Fv54,56,66.  Protoplasts are developed by using enzymes like chitinase and β-glucuronidase that 
break down the fungal cell walls, leaving behind a “naked” cell.  The transformation construct is 
introduced to the protoplasts along with a high concentration of polyethylene glycol that helps 
make protoplasts competent for DNA uptake.  Once the construct is inside, natural DNA repair 
mechanisms insert the foreign DNA into the fungal genome, often using homologous 
recombination mechanisms.  Protoplasts of the Mont-1 (NRRL 22292) isolate have been 
obtained using the optimized protocol described in my Preliminary Studies.  This isolate was 
chosen because it consistently produces a high level of root rot and foliar symptoms on 
inoculated soybeans in greenhouse and growth chamber experiments.  Once a fluorescent strain 
is obtained, we will obtain conidial suspensions and inoculate germinating soybean roots and 
follow the infection process using fluorescent microscopy, specifically searching for 
appressorium development.   

This fluorescent strain will also be useful in determining the relationship between Fv and 
SCN, which is the second entry mechanism I will investigate.  A study by Muhammed et al. 
optimized the use of the model nematode Caenorhabditis elegans to determine if various 
Fusarium species were animal pathogens, and found numerous Fusarium species were able to 
colonize the internal organs of the nematodes as well as the external cuticles40.  Therefore, we 
hypothesize that Fv may be able to colonize SCN cuticles and internal organs, using the SCN as 
a transmission vector to cause SDS.  Using the study by Muhammed et al as a framework, I will 
determine if Fv has specific interactions with nematodes by using the model nematode C. 
elegans.  I will collect Fv macroconidia and C. elegans adults and co-culture them together in 
liquid medium at 25°C for 4+ hours.  After incubation, adult C. elegans will be picked out of the 
solution, washed, collected, and placed on microscope slides containing levamisole.  This will 
cause paralysis in the nematodes, render them immobile, and allow observation with a confocal 
microscope.  Conventional and fluorescent microscopy will reveal if Fv is capable of penetrating 
nematode cuticles or capable of colonizing internal organs, potentially after ingestion by the 
nematode.  Heat-killed Fv conidia will be used as a control in these co-culture experiments.  
These experiments will then be repeated using SCN to confirm or refute the results obtained with 
C. elegans.   
 
Aim 1 - Potential pitfalls 
 Developing transformation constructs as plasmids using Gibson Assembly can be 
expensive, and incorrect nucleotides can be incorporated in the overlapping sequences that are 
digested by the T5 exonuclease.  If prohibitive costs or difficulties with sequencing errors occurs, 
merge PCR methods will be used as an alternative approach81.  Merge PCR also uses primers 
containing 5’ overhang sequences that are complimentary to other sequences of interest, but does 
not result in a plasmid.  Instead of an exonuclease creating sticky ends of the two sequences, 
denaturing the fragments with high temperatures allows some of the sequences to come together 
and create a merged product containing both initial fragments.  Gibson Assembly develops the 
transformation construct much quicker, and can be propagated as a plasmid through E. coli, 
allowing high reproducibility and the ability to share the construct with other labs. 
 Rearing SCN in a lab setting is highly complicated because SCN is an obligate biotroph 
and must be reared in planta.  In addition, specific soybean cultivars are only susceptible to 
certain SCN races, but not others82.  Therefore, the co-culture experiment with fluorescent Fv 
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macroconidia will benefit from optimization with C. elegans first, as this model nematode is also 
found in soils and is easily cultured in a lab.  In addition, we have a glp4 mutant of C. elegans 
that is temperature sensitive, and cannot reproduce when cultured at 16°C allowing us to use a 
specific number of nematodes in each experiment.  If Fv can colonize C. elegans and cause 
lethality, we will be able to collect data to quantify this relationship.    
 
Aim 2 - Identify FvTox1 and FvNIS1-interacting proteins that induce foliar SDS symptoms 
 As previously mentioned, FvTox1 and FvNIS1 are effector proteins produced by Fv that 
plays a role in foliar chlorosis and necrosis development in soybeans, respectively55,56.  To our 
knowledge, FvTox1 has been successfully cloned and C-terminally tagged with useful epitopes 
for molecular manipulation52,54, but FvNIS1 has not.  Much of the molecular work regarding 
these effectors have surrounded characterizing the gene and finding ways to inhibit their 
function.  However, no studies have been done to determine their specific mode of action or 
cellular localization.  Without knowing how these proteins function, it is difficult to inhibit their 
function.  I aim to use molecular techniques to characterize the function of these proteins, 
allowing for a more targeted approach at their inhibition. 
 First, I will confirm the results achieved by Pudake et al. and Chang et al. to show that 
FvTox1 and FvNIS1 play a large role in the development of foliar SDS chlorosis and necrosis, 
respectively55,56.  I will use our optimized protocol for protoplasting and transforming Fv isolates 
described above to knock out each gene.  I will use PCR to confirm the replacement of each 
effector gene with the selectable marker gene.  Finally, I will prepare wild-type and knockout 
strains on autoclaved sorghum to act as an inoculation source in growth chamber experiments.  
Soybean seedlings potted in vermiculite containing inoculum should develop classic SDS 
symptoms.  I will rate the root rot severity, foliar symptom severity, and obtain root dry weight 
measurements to determine if the knockout strains cause less foliar symptoms as previously 
reported.  I hypothesize that the knockout strains will have lower root rot and foliar SDS severity 
than that caused by the Mont-1 isolate.   
 Second, I will clone each gene into an expression vector for the overexpression and 
purification of the effectors.  I will clone each gene into the pPicZ-A plasmid using KpnI and 
ApaI restriction enzymes, which will add an in-frame c-myc and 6x HIS tag to the 3’ end of each 
gene.  When translated, these proteins will have the c-myc and 6x HIS tag directly fused to the c-
terminus, allowing purification with affinity chromatography and specific detection using anti-
myc antibodies in a Western-blot.  This plasmid can be used to transform Pichia pastoris, a 
model yeast for eukaryotic protein expression.  Since these proteins are fungal in origin, P. 
pastoris is more likely to fold, process, secrete, and post-translationally modify these proteins 
correctly, while other model species like E. coli may not.  I will screen the purified protein for 
disease-causing activity by introducing it into soybean leaf tissues using a vacuum infiltration 
assay.  Infiltrating soybean leaf disks with purified toxin should induce foliar SDS symptoms, as 
seen previously.54  I plan to re-isolate these proteins from infiltrated leaf discs and perform co-
immunoprecipitation to identify potential binding partners.  Binding partners of these proteins 
can be identified using liquid chromatography mass spectrometry (LC-MS) at the Michigan State 
University Proteomics Facility, with purified unbound effector protein submitted as a control.  I 
plan to confirm these putative binding partners by cloning them and performing yeast two-hybrid 
experiments, where the effector and putative binding partner are fused to “bait” and “prey” 
proteins that are necessary for transcription of a reporter gene.  If the effector and putative 
binding partner have specific interaction, the two yeast proteins will promote transcription of the 
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reporter gene, providing significant evidence that there is direct interaction between the effector 
and putative binding partner.  
 Additional evidence for the putative binding partners identified in the above experiments 
will be obtained through fluorescent microscopy.  Many fluorescent proteins have been N or C-
terminally fused to fungal proteins of interest49,67,79,83,84.  Both FvTox1 and FvNIS1 contain 
functionally important N-terminal signal peptides, so I will generate fluorescent protein fusions 
to the C-terminus of FvTox1 and FvNIS1.  These fusion constructs can again be overexpressed 
in P. pastoris and used in vacuum infiltration assays, as described above.  However, instead of 
following up with co-immunoprecipitation and LC-MS, the leaves will be fixed, sectioned, and 
prepared on slides for viewing with confocal fluorescent microscopy.  Localization of the fusion 
protein should indicate whether the toxin acts internally or in the soybean apoplast.  Effectors 
that co-localize to regions that the putative binding partners are also located will provide 
additional support for their interaction. 
 Ultimately, the goal of this project would be to identify soybean proteins that interact 
specifically with each effector, potentially acting as a receptor.  Characterization of these 
soybean proteins could elucidate their function in the absence of the effectors.  If the regular host 
function is dispensable, soybeans harboring a nonsense mutation in the gene encoding it may 
provide higher resistance to foliar SDS symptoms and added yield protection.     
 
Aim 2 - Potential pitfalls. 
 Additions to the C-terminus of FvTox1 have been developed and used in other projects52, 
but tagged versions of FvNIS1 have not been reported.  The original NIS1 protein discovered in 
Colletotrichum orbiculare was C-terminally tagged with an HA epitope57, so a similar tag on 
FvNIS1 is not expected to interfere with its natural function.  However, the addition of any tag to 
a protein may cause improper folding and interference with the normal functionality of the 
protein.  Therefore, if this type of problem arises, an N-terminal tag may be implemented.  Since 
both FvTox1 and FvNIS1 are secreted proteins and contain putative N-terminal secretion 
peptides that are cleaved upon secretion54,56, an N-terminal HIS-tag may be naturally cleaved 
along with the secretion signal, rendering the tag useless.  If tagging these proteins becomes too 
difficult, specific antibodies will be developed to each protein by overexpressing it in P. pastoris 
and sending it to a company for antibody development through injection of a rabbit or goat, and 
conjugated to a fluorescent dye for fluorescent microscopy.  However, the methods described in 
this aim will be the most efficient use of time and funding to perform the experiments described. 

Similarly, fusing a fluorescent protein to a small protein of interest can more than double 
its size.  FvTox1 is 172 amino acids long, FvNIS1 is 152 amino acids long, and eGFP is 238 
amino acids long.  Therefore, adding the fluorescent tag makes the overall protein much larger.  
In addition, a direct fusion from the last amino acid in the effector to the starting methionine of 
the fluorescent protein may inhibit proper folding of one or both domains of the fusion protein.  
Instead of a direct fusion, various linker sequences can be added that may help each domain fold 
properly, optimizing effector functionality while retaining fluorescent properties85,86.  
 After the development of a functional effector-GFP fusion protein is created, plant-cell 
auto-fluorescence may become problematic during fluorescent microscopy.  Chloroplasts are 
known to have intense auto-fluorescence, making fluorescent microscopy of leaf tissues more 
challenging.  Alternative fluorescent proteins such as CFP, YFP, mCherry, or mNeonGreen may 
be fused to the effectors instead of GFP to detect unique fluorescent properties of the toxin and 
the leaf auto-fluorescence.   
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Aim 3 - Investigate alternate-host resistance mechanisms to SDS. 

Identifying putative binding partners in Aim 2 will allow me to search for homologs in 
other crops.  This is of particular interest due to the findings of Kolander and colleagues, who 
found that Fv has the ability to colonize many different crop and weed species12.  Despite the 
ability to colonize other plants, foliar symptoms were restricted to soybean and most other 
legumes (alfalfa, navy bean, and red clover).  Root rot symptoms were also found in legumes 
(soybean, alfalfa, pinto bean, navy bean, white clover, red clover, and pea) and a common weed 
(Canadian milk vetch).  Some crops did not show classic SDS symptoms, but did show a 
significant reduction in biomass (sugar beet and canola).  Yet other crops were colonized, but 
showed no apparent symptoms of infection (corn, wheat, ryegrass, pigweed, and lambsquarters).  
Suspicious SDS-like foliar symptoms have also been found in the common weed horsenettle 
(M.I. Chilvers, A. Byrne, unpublished).  If these alternate hosts contain homologs to the putative 
binding partners identified in soybean, perhaps the toxins can induce foliar symptoms in these 
alternate hosts under certain conditions.   

I aim to use alternate host crops like red kidney bean, sugar beet, and corn that display 
different levels of SDS symptoms and perform leaf infiltration assays on each using my purified 
effectors.  There are two possible outcomes; the effectors induce disease symptoms (SDS) in 
alternate hosts, or they do not.  If they do, these alternate hosts likely contain a homolog to the 
binding partner identified in soybean, but may employ a unique resistance mechanism to prevent 
these effectors from reaching foliar tissues during a natural infection.  If they do not cause SDS 
symptoms, these effectors are truly host-selective and an investigation into specific residues 
necessary for inducing SDS symptoms is warranted.  In addition, if these proteins show SDS-
causing capabilities across a broad spectrum of plants, it may be worth considering upscale 
production and use as a natural herbicide. 
 
Aim 3 - Potential pitfalls.  
 Working with multiple unrelated species of plants means that leaf tissues will have 
different compositions, thicknesses, cuticle properties, and tolerances to leaf infiltration assays.  
The optimized protocol for a leaf infiltration in soybean leaves may not work well for another 
crop.  Therefore, it may be beneficial to practice leaf infiltration assays on model plants, like 
Arabidopsis thaliana and Nicotiana benthamiana, even though these plants have not been shown 
to be alternative hosts of Fv.   

A lack of SDS symptoms in non-soybean leaf discs may indicate that the proteins are not 
being infiltrated, or that they are ineffective at inducing SDS.  Therefore, additional 
immunoprecipitation assays may be necessary after infiltrating alternate-host leaves to confirm 
that the effectors did enter the leaves, even if it was not capable of causing symptoms in these 
plants.  If exposing cells to the effectors via leaf infiltration proves difficult, a transient 
expression system like the Effector Detector Vector may be used instead.  This vector allows a 
chimeric fusion of a bacterial and non-bacterial peptide (like fungal proteins) to be injected into 
Arabidopsis thaliana or Nicotiana benthamiana by taking advantage of the type III secretion 
system in Pseudomonas syringae87.  The known bacterial peptide is recognized and cleaved by 
the plant, allowing the fungal protein to be released.  If the plant develops symptoms, the fungal 
protein is thought to be an effector; if not, then it is not an effector.  The system could potentially 
be used successfully on other types of plants as well, but may require unique pathovars of 
Pseudomonas syringae88. 
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Timetable 
Aim 1 – Identify modes of F. virguliforme entry into soybean root tissues. 
In 0-12 months: 

• Generate fluorescent strain of F. virguliforme 
• Fluorescent microscopy of inoculated soybean roots, searching for appressoria 
• Fluorescent microscopy of C. elegans co-cultured with F. virguliforme, searching for 

fungal colonization 
  
Aim 2 – Identify FvTox1 and FvNIS1-interacting proteins that induce foliar SDS symptoms 
Already accomplished: 

• fvtox1 knockout mutants generated and PCR confirmed 
• fvtox1 knockout mutant inoculum prepared 

In 6-12 months: 
• Generate fvnis1 knockout strains and inoculum 
• Clone FvTox1 and FvNIS1 into P. pastoris for overexpression of tagged proteins 

In 12-24 months: 
• Optimize and perform vacuum infiltration assays on soybean leaf disks 

In 18-36 months 
• Co-immunoprecipitation and LC-MS of toxin binding partners 
• Yeast-2-hybrid confirmation experiments 
• Fluorescent microscopy to determine subcellular localization of toxins 

 
Aim 3 – Investigate alternate-host resistance mechanisms to SDS 
In 12-24 months: 

• Optimize and perform vacuum infiltration assays on alternate host leaf disks  
In 18-36 months: 

• Co-immunoprecipitation and LC-MS of toxin binding partners 
• Yeast-2-hybrid confirmation experiments 
• Fluorescent microscopy to determine subcellular localization of toxins
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Potential Funding Sources 
 The National Institute for Food and Agriculture (NIFA) branch of the USDA provides 
support for advancements in agriculture through biotechnology while encouraging active 
education and outreach during the experiments.  This project would be suited for a USDA NIFA 
grant due to the potential development of transgenic crops that could improve soybean 
production.  Given the current state of the public perception of transgenic crops, this project 
would also benefit from the educational and outreach components of such a grant.  Funding from 
the NSF may also be pursued. 
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